
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

J. Math. Anal. Appl. 385 (2012) 808–822

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Starlikeness of integral transforms and duality ✩

Rosihan M. Ali a,∗, Abeer O. Badghaish b, V. Ravichandran c, A. Swaminathan d

a School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
b Mathematics Department, King Abdul Aziz University, Jeddah, Saudi Arabia
c Department of Mathematics, University of Delhi, Delhi-110007, India
d Department of Mathematics, I.I.T. Roorkee, Roorkee 247667, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 January 2011
Available online 14 July 2011
Submitted by S. Ruscheweyh

Keywords:
Duality
Convolution
Univalence
Starlike functions
Integral transforms

For λ satisfying a certain admissibility criteria, sufficient conditions are obtained that
ensure the integral transform

Vλ( f )(z) :=
1∫

0

λ(t)
f (tz)

t
dt

maps normalized analytic functions f satisfying

Re eiφ
(

(1 − α + 2γ )
f (z)

z
+ (α − 2γ ) f ′(z) + γ zf ′′(z) − β

)
> 0

into the class of starlike functions. Several interesting examples of λ are considered.
Connections with various earlier works are made, and the results obtained not only reduce
to those earlier works, but indeed improved certain known results. As a consequence, the
smallest value β < 1 is obtained that ensures a function f satisfying Re( f ′(z) + αzf ′′(z) +
γ z2 f ′′′(z)) > β is starlike.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let A denote the class of analytic functions f in the unit disk D := {z ∈ C: |z| < 1} with the normalization f (0) = 0 =
f ′(0) − 1, and let S denote the subclass of A consisting of functions univalent in D. A function f in A is starlike if f (D) is
starlike with respect to the origin. Analytically this geometric property is equivalent to the condition

Re

(
zf ′(z)

f (z)

)
> 0, z ∈ D.

The subclass of S consisting of starlike functions is denoted by S∗ . For any two functions f (z) = z + a2z2 + · · · and g(z) =
z + b2z2 + · · · in A, the Hadamard product (or convolution) of f and g is the function f ∗ g defined by

( f ∗ g)(z) := z +
∞∑

n=2

anbnzn.
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For f ∈ A, Fournier and Ruscheweyh [6] introduced the operator

F (z) = Vλ( f )(z) :=
1∫

0

λ(t)
f (tz)

t
dt, (1.1)

where λ is a non-negative real-valued integrable function satisfying the condition
∫ 1

0 λ(t)dt = 1. They used the Duality
Principle [14,15] to prove starlikeness of the linear integral transform Vλ( f ) over functions f in the class

P(β) := {
f ∈ A: ∃φ ∈ R with Re eiφ(

f ′(z) − β
)
> 0, z ∈ D

}
.

Such problems were previously handled using the theory of subordination (see for example [10]). The duality methodology
seems to work best in the sense that it gives sharp estimates of the parameter β , in situations where it can be applied.

This duality technique is now popularly used by several authors to discuss similar problems. In 2001, Kim and Rønning
[8] investigated starlikeness properties of the integral transform (1.1) for functions f in the class

Pα(β) :=
{

f ∈ A: ∃φ ∈ R with Re eiφ
(

(1 − α)
f (z)

z
+ α f ′(z) − β

)
> 0, z ∈ D

}
.

In a recent paper Ponnusamy and Rønning [12] discussed this problem for functions f in the class

Rγ (β) := {
f ∈ A: ∃φ ∈ R with Re eiφ(

f ′(z) + γ zf ′′(z) − β
)
> 0, z ∈ D

}
.

For α � 0, γ � 0 and β < 1, define the class

Wβ(α,γ ) :=
{

f ∈ A: ∃φ ∈ R with Re eiφ
(

(1 − α + 2γ )
f (z)

z
+ (α − 2γ ) f ′(z) + γ zf ′′(z) − β

)
> 0, z ∈ D

}
.

(1.2)

It is evident that P(β) ≡ Wβ(1,0), Pα(β) ≡ Wβ(α,0), and Rγ (β) ≡ Wβ(1 + 2γ ,γ ).
The class Wβ(α,γ ) is closely related to the class R(α,γ ,h) consisting of all functions f ∈ A satisfying

f ′(z) + αzf ′′(z) + γ z2 f ′′′(z) ≺ h(z), z ∈ D,

with h(z) := hβ(z) = (1 + (1 − 2β)z)/(1 − z). Here q(z) ≺ h(z) indicates that the function q is subordinate to h, or in other
words, there is an analytic function w satisfying w(0) = 0 and |w(z)| < 1, such that q(z) = h(w(z)), z ∈ D. In the special
case φ = 0 in (1.2), it is evident that f ∈ R(α,γ ,hβ) if and only if zf ′ is in a subclass of Wβ(α,γ ). Functions f ∈ R(α,γ ,h)

for a suitably normalized convex function h have a double integral representation, which was recently investigated by Ali
et al. [1].

Interestingly, the general integral transform Vλ( f ) in (1.1) reduces to various well-known integral operators for specific
choices of λ. For example,

λ(t) := (1 + c)tc, c > −1,

gives the Bernardi integral operator, while the choice

λ(t) := (a + 1)p

Γ (p)
ta

(
log

1

t

)p−1

, a > −1, p � 0,

gives the Komatu operator [9]. Clearly for p = 1 the Komatu operator is in fact the Bernardi operator.
For a certain choice of λ, the integral operator Vλ is the convolution between a function f and the Gaussian hypergeo-

metric function F (a,b; c; z) := 2 F1(a,b; c; z), which is related to the general Hohlov operator [7] given by

Ha,b,c( f ) := zF (a,b; c; z) ∗ f (z).

In the special case a = 1, the operator reduces to the Carlson–Shaffer operator [5]. Here 2 F1(a,b; c; z) is the Gaussian
hypergeometric function given by the series

∞∑
n=0

(a)n(b)n

(c)n(1)n
zn, z ∈ D,

where the Pochhammer symbol is used to indicate (a)n = a(a + 1)n−1, (a)0 = 1, and where a,b, c are real parameters with
c 	= 0,−1,−2, . . . .

In the present manuscript, the Duality Principle is used to investigate the starlikeness of the integral transform Vλ( f )
in (1.1) over the class Wβ(α,γ ). In Section 3, the best value of β < 1 is determined ensuring that Vλ( f ) maps Wβ(α,γ )

into the class of normalized univalent functions S . Additionally, necessary and sufficient conditions are determined that
ensure Vλ( f ) is starlike univalent over the class Wβ(α,γ ). In Section 4, we find easier sufficient conditions for Vλ( f ) to be
starlike, and Section 5 is devoted to several applications of results obtained for specific choices of the admissible function λ.
In particular, the smallest value β < 1 is obtained that ensures a function f satisfying Re( f ′(z) + αzf ′′(z) + γ z2 f ′′′(z)) > β

in the unit disk is starlike.
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2. Preliminaries

First we introduce two constants μ � 0 and ν � 0 satisfying

μ + ν = α − γ and μν = γ . (2.1)

When γ = 0, then μ is chosen to be 0, in which case, ν = α � 0. When α = 1 + 2γ , (2.1) yields μ + ν = 1 + γ = 1 + μν ,
or (μ − 1)(1 − ν) = 0.

(i) For γ > 0, then choosing μ = 1 gives ν = γ .
(ii) For γ = 0, then μ = 0 and ν = α = 1.

In the sequel, whenever the particular case α = 1 + 2γ is considered, the values of μ and ν for γ > 0 will be taken as
μ = 1 and ν = γ respectively, while μ = 0 and ν = 1 = α in the case γ = 0.

Next we introduce two auxiliary functions. Let

φμ,ν(z) = 1 +
∞∑

n=1

(nν + 1)(nμ + 1)

n + 1
zn, (2.2)

and

ψμ,ν(z) = φ−1
μ,ν(z) = 1 +

∞∑
n=1

n + 1

(nν + 1)(nμ + 1)
zn

=
1∫

0

1∫
0

ds dt

(1 − tν sμz)2
. (2.3)

Here φ−1
μ,ν denotes the convolution inverse of φμ,ν such that φμ,ν ∗ φ−1

μ,ν = z/(1 − z). If γ = 0, then μ = 0, ν = α, and it is
clear that

ψ0,α(z) = 1 +
∞∑

n=1

n + 1

nα + 1
zn =

1∫
0

dt

(1 − tαz)2
.

If γ > 0, then ν > 0, μ > 0, and making the change of variables u = tν , v = sμ results in

ψμ,ν(z) = 1

μν

1∫
0

1∫
0

u1/ν−1 v1/μ−1

(1 − uvz)2
du dv.

Thus the function ψμ,ν can be written as

ψμ,ν(z) =
⎧⎨
⎩

1
μν

∫ 1
0

∫ 1
0

u1/ν−1 v1/μ−1

(1−uvz)2 du dv, γ > 0,∫ 1
0

dt
(1−tα z)2 , γ = 0, α � 0.

(2.4)

Now let g be the solution of the initial-value problem

d

dt
t1/ν

(
1 + g(t)

) =
⎧⎨
⎩

2
μν t1/ν−1

∫ 1
0

s1/μ−1

(1+st)2 ds, γ > 0,

2
α

t1/α−1

(1+t)2 , γ = 0, α > 0,
(2.5)

satisfying g(0) = 1. It is easily seen that the solution is given by

g(t) = 2

μν

1∫
0

1∫
0

s1/μ−1 w1/ν−1

(1 + swt)2
ds dw − 1 = 2

∞∑
n=0

(n + 1)(−1)ntn

(1 + μn)(1 + νn)
− 1. (2.6)

In particular,

gγ (t) = 1

γ

1∫
0

s1/γ −1 1 − st

1 + st
ds, γ > 0, α = 1 + 2γ ,

gα(t) = 2

α
t−1/α

t∫
0

τ 1/α−1

(1 + τ )2
dτ − 1, γ = 0, α > 0. (2.7)
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3. Main results

Functions in the class Wβ(α,γ ) generally are not starlike; indeed, they may not even be univalent. Our central result
below provides conditions for univalence and starlikeness.

Theorem 3.1. Let μ � 0, ν � 0 satisfy (2.1), and let β < 1 satisfy

β

1 − β
= −

1∫
0

λ(t)g(t)dt, (3.1)

where g is the solution of the initial-value problem (2.5). If f ∈ Wβ(α,γ ), then F = Vλ( f ) ∈ W0(1,0) ⊂ S .
Further let

Λν(t) =
1∫

t

λ(x)

x1/ν
dx, ν > 0, (3.2)

Πμ,ν(t) =
{∫ 1

t Λν(x)x1/ν−1−1/μ dx, γ > 0 (μ > 0, ν > 0),

Λα(t), γ = 0 (μ = 0, ν = α > 0),
(3.3)

and assume that t1/νΛν(t) → 0, and t1/μΠμ,ν(t) → 0 as t → 0+ . Let

h(z) = z(1 + ε−1
2 z)

(1 − z)2
, |ε| = 1.

Then ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Re

1∫
0

Πμ,ν(t)t1/μ−1
(

h(tz)

tz
− 1

(1 + t)2

)
dt � 0, γ > 0,

Re

1∫
0

Π0,α(t)t1/α−1
(

h(tz)

tz
− 1

(1 + t)2

)
dt � 0, γ = 0,

(3.4)

if and only if F (z) = Vλ( f )(z) is in S∗ . This conclusion does not hold for smaller values of β .

Proof. Since the case γ = 0 (μ = 0 and ν = α) corresponds to [8, Theorem 2.1], it is sufficient to consider only the case
γ > 0.

Let

H(z) = (1 − α + 2γ )
f (z)

z
+ (α − 2γ ) f ′(z) + γ zf ′′(z).

Since ν + μ = α − γ and μν = γ , then

H(z) = (
1 + γ − (α − γ )

) f (z)

z
+ (α − γ − γ ) f ′(z) + γ zf ′′(z)

= (1 + μν − ν − μ)
f (z)

z
+ (ν + μ − μν) f ′(z) + μνzf ′′(z)

= μν

(
1

ν
− 1

)(
1

μ
− 1

)
z−1 f (z) + μν

(
1

ν
− 1

)
f ′(z) + ν f ′(z) + μνzf ′′(z)

= μνz1−1/μ d

dz

[
z1/μ−1/ν+1

((
1

ν
− 1

)
z1/ν−2 f (z) + z1/ν−1 f ′(z)

)]

= μνz1−1/μ d

dz

[
z1/μ−1/ν+1 d

dz

(
z1/ν−1 f (z)

)]
.

With f (z) = z + ∑∞
n=2 anzn , it follows from (2.2) that

H(z) = 1 +
∞∑

n=1

an+1(nν + 1)(nμ + 1)zn = f ′(z) ∗ φμ,ν, (3.5)
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and (2.3) yields

f ′(z) = H(z) ∗ ψμ,ν(z). (3.6)

Let g be given by

g(z) = H(z) − β

1 − β
.

Since Re eiφ g(z) > 0, without loss of generality, we may assume that

g(z) = 1 + xz

1 + yz
, |x| = 1, |y| = 1. (3.7)

Now (3.6) implies that f ′(z) = [(1 − β)g(z) + β] ∗ ψμ,ν , and (3.7) readily gives

f (z)

z
= 1

z

z∫
0

(
(1 − β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z), (3.8)

where for convenience, we write ψ := ψμ,ν .
To show that F ∈ S , the Noshiro–Warschawski Theorem asserts it is sufficient to prove that F ′(D) is contained in a

half-plane not containing the origin. Now

F ′(z) =
1∫

0

λ(t)

1 − tz
dt ∗ f ′(z) =

1∫
0

λ(t)

1 − tz
dt ∗

(
(1 − β)

1 + xz

1 + yz
+ β

)
∗ ψ(z)

=
1∫

0

λ(t)ψ(tz)dt ∗
(

(1 − β)
1 + xz

1 + yz
+ β

)
=

( 1∫
0

λ(t)
[
(1 − β)ψ(tz) + β

]
dt

)
∗ 1 + xz

1 + yz
.

It is known [15, p. 23] that the dual set of functions g given by (3.7) consists of analytic functions q satisfying q(0) = 1 and
Re q(z) > 1/2 in D. Thus

F ′ 	= 0 ⇐⇒ Re

1∫
0

λ(t)
[
(1 − β)ψ(tz) + β

]
dt >

1

2

⇐⇒ Re(1 − β)

[ 1∫
0

λ(t)ψ(tz)dt + β

1 − β
− 1

2(1 − β)

]
> 0.

It follows from (3.1) and (2.4) that the latter condition is equivalent to

Re

1∫
0

λ(t)

[(
1

μν

1∫
0

1∫
0

u1/ν−1 v1/μ−1

(1 − uvtz)2
du dv

)
−

(
1 + g(t)

2

)]
dt > 0. (3.9)

Now

Re

1∫
0

λ(t)

[(
1

μν

1∫
0

1∫
0

u1/ν−1 v1/μ−1

(1 − uvtz)2
du dv

)
−

(
1 + g(t)

2

)]
dt

� Re

1∫
0

λ(t)

[(
1

μν

1∫
0

1∫
0

u1/ν−1 v1/μ−1

(1 + uvt)2
du dv

)
−

(
1 + g(t)

2

)]
dt. (3.10)

The condition (2.6) implies that

1 + g(t)

2
= 1

μν

1∫
0

1∫
0

w1/ν−1s1/μ−1

(1 + swt)2
ds dw.

Substituting this value into (3.10) makes the integrand vanish, and so condition (3.9) holds. Consequently F ′(D) ⊂ co g(D)

with g given by (3.7) ([15, p. 23], [13, Lemma 4, p. 146]), which gives Re eiθ F ′(z) > 0 for z ∈ D. Hence F is close-to-convex,
and thus univalent.
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If f ∈ Wβ(α,γ ), a well-known result in [15, p. 94] states that

F ∈ S∗ ⇐⇒ 1

z
(F ∗ h)(z) 	= 0, z ∈ D,

where

h(z) = z(1 + ε−1
2 z)

(1 − z)2
, |ε| = 1.

Hence F ∈ S∗ if and only if

0 	= 1

z

(
Vλ( f )(z) ∗ h(z)

) = 1

z

[ 1∫
0

λ(t)
f (tz)

t
dt ∗ h(z)

]

=
1∫

0

λ(t)

1 − tz
dt ∗ f (z)

z
∗ h(z)

z
.

From (3.8), it follows that

0 	=
1∫

0

λ(t)

1 − tz
dt ∗

[
1

z

z∫
0

(
(1 − β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z)

]
∗ h(z)

z

=
1∫

0

λ(t)

1 − tz
dt ∗ h(z)

z
∗

[
1

z

z∫
0

(
(1 − β)

1 + xw

1 + yw
+ β

)
dw

]
∗ ψ(z)

=
1∫

0

λ(t)
h(tz)

tz
dt ∗ (1 − β)

[
1

z

z∫
0

1 + xw

1 + yw
dw + β

1 − β

]
∗ ψ(z)

= (1 − β)

[ 1∫
0

λ(t)
h(tz)

tz
dt + β

1 − β

]
∗ 1

z

z∫
0

1 + xw

1 + yw
dw ∗ ψ(z).

Hence

0 	= (1 − β)

[ 1∫
0

λ(t)

(
1

z

z∫
0

h(t w)

t w
dw

)
dt + β

1 − β

]
∗ 1 + xz

1 + yz
∗ ψ(z)

⇐⇒ Re(1 − β)

[ 1∫
0

λ(t)

(
1

z

z∫
0

h(t w)

t w
dw

)
dt + β

1 − β

]
∗ ψ(z) >

1

2

⇐⇒ Re(1 − β)

[ 1∫
0

λ(t)

(
1

z

z∫
0

h(t w)

t w
dw

)
dt + β

1 − β
− 1

2(1 − β)

]
∗ ψ(z) > 0

⇐⇒ Re

[ 1∫
0

λ(t)

(
1

z

z∫
0

h(t w)

t w
dw

)
dt + β

1 − β
− 1

2(1 − β)

]
∗ ψ(z) > 0.

Using (3.1), the latter condition is equivalent to

Re

[ 1∫
0

λ(t)

(
1

z

z∫
0

h(t w)

t w
dw − 1 + g(t)

2

)
dt

]
∗ ψ(z) > 0.

From (2.3), the above inequality is equivalent to
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0 < Re

1∫
0

λ(t)

( ∞∑
n=0

zn

(nν + 1)(nμ + 1)
∗ h(tz)

tz
− 1 + g(t)

2

)
dt

= Re

1∫
0

λ(t)

( 1∫
0

1∫
0

dηdζ

1 − zηνζμ
∗ h(tz)

tz
− 1 + g(t)

2

)
dt

= Re

1∫
0

λ(t)

( 1∫
0

1∫
0

h(tzηνζμ)

tzηνζμ
dηdζ − 1 + g(t)

2

)
dt,

which reduces to

Re

1∫
0

λ(t)

[ 1∫
0

1∫
0

1

μν

h(tzuv)

tzuv
u1/ν−1 v1/μ−1 dv du − 1 + g(t)

2

]
dt > 0.

A change of variable w = tu leads to

Re

1∫
0

λ(t)

t1/ν

[ t∫
0

1∫
0

h(wzv)

wzv
w1/ν−1 v1/μ−1 dv dw − μνt1/ν 1 + g(t)

2

]
dt > 0.

Integrating by parts with respect to t and using (2.5) gives the equivalent form

Re

1∫
0

Λν(t)

[ 1∫
0

h(tzv)

tzv
t1/ν−1 v1/μ−1 dv − t1/ν−1

1∫
0

s1/μ−1

(1 + st)2
ds

]
dt � 0.

Making the variable change w = vt and η = st reduces the above inequality to

Re

1∫
0

Λν(t)t1/ν−1/μ−1

[ t∫
0

h(wz)

wz
w1/μ−1 dw −

t∫
0

η1/μ−1

(1 + η)2
dη

]
dt � 0,

which after integrating by parts with respect to t yields

Re

1∫
0

Πμ,ν(t)t1/μ−1
(

h(tz)

tz
− 1

(1 + t)2

)
dt � 0.

Thus F ∈ S∗ if and only if condition (3.4) holds.
To verify sharpness, let β0 satisfy

β0

1 − β0
= −

1∫
0

λ(t)g(t)dt.

Assume that β < β0 and let f ∈ Wβ(α,γ ) be the solution of the differential equation

(1 − α + 2γ )
f (z)

z
+ (α − 2γ ) f ′(z) + γ zf ′′(z) = β + (1 − β)

1 + z

1 − z
.

From (3.5), it follows that

f (z) = z +
∞∑

n=1

2(1 − β)

(nν + 1)(nμ + 1)
zn+1.

Thus

G(z) = Vλ( f )(z) = z +
∞∑

n=1

2(1 − β)τn

(nν + 1)(nμ + 1)
zn+1,
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where τn = ∫ 1
0 λ(t)tn dt . Now (2.6) implies that

β0

1 − β0
= −

1∫
0

λ(t)g(t)dt = −1 − 2
∞∑

n=1

(n + 1)(−1)nτn

(1 + μn)(1 + νn)
.

This means that

G ′(−1) = 1 + 2(1 − β)

∞∑
n=1

(n + 1)(−1)nτn

(1 + μn)(1 + νn)
= 1 − 1 − β

1 − β0
< 0.

Hence G ′(z) = 0 for some z ∈ D, and so G is not even locally univalent in D. Therefore the value of β in (3.1) is sharp. �
Remark 3.1. Theorem 3.1 yields several known results.

(1) When γ = 0, then μ = 0, ν = α, and in this particular instance, Theorem 3.1 gives Theorem 2.1 in Kim and Rønning [8].
(2) The special case α = 1 above yields a result of Fournier and Ruscheweyh [6, Theorem 2].
(3) If α = 1 + 2γ , then μ = 1 and ν = γ in the case γ > 0, while μ = 0 and ν = α = 1 when γ = 0. In this instance,

Theorem 3.1 gives Theorem 2.2 in Ponnusamy and Rønning [12].

4. Starlikeness criteria of integral transforms

An easier sufficient condition for starlikeness of the integral operator (1.1) is given in the following theorem.

Theorem 4.1. Let Πμ,ν and Λν be as given in Theorem 3.1. Assume that both Πμ,ν and Λν are integrable on [0,1] and positive on
(0,1). Assume further that μ � 1 and

Πμ,ν(t)

1 − t2
is decreasing on (0,1). (4.1)

If β satisfies (3.1), and f ∈ Wβ(α,γ ), then Vλ( f ) ∈ S∗ .

Proof. The function t1/μ−1 is decreasing on (0,1) when μ � 1. Thus the condition (4.1) along with [6, Theorem 1 ] yield

Re

1∫
0

Πμ,ν(t)t1/μ−1
(

h(tz)

tz
− 1

(1 + t2)

)
dt � 0.

The desired conclusion now follows from Theorem 3.1. �
Let us scrutinize Theorem 4.1 for helpful conditions to ensure starlikeness of Vλ( f ). Recall that for γ > 0,

Πμ,ν(t) =
1∫

t

Λν(y)y1/ν−1−1/μ dy and Λν(t) =
1∫

t

λ(x)

x1/ν
dx.

To apply Theorem 4.1, it is sufficient to show that the function

p(t) = Πμ,ν(t)

1 − t2
(4.2)

is decreasing in the interval (0,1). Note that p(t) > 0 and

p′(t)
p(t)

= − Λν(t)

t1+1/μ−1/νΠμ,ν(t)
+ 2t

1 − t2
.

So it remains to show that q′(t) � 0 over (0,1), where

q(t) := Πμ,ν(t) − 1 − t2

2
Λν(t)t1/ν−2−1/μ.

Since q(1) = 0, this will imply that p′(t) � 0, and p is decreasing on (0,1). Now

q′(t) = Π ′
μ,ν(t) − 1

2

[(
1 − t2)Λ′

ν(t)t1/ν−2−1/μ +Λν(t)(−2t)t1/ν−2−1/μ +Λν(t)
(
1 − t2)( 1

ν
− 2 − 1

μ

)
t1/ν−3−1/μ

]

= 1 − t2

2
t1/ν−3−1/μ

[
λ(t)t1−1/ν −

(
1

ν
− 2 − 1

μ

)
Λν(t)

]
.
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So q′(t) � 0 is equivalent to the condition

�(t) := −λ(t)t1−1/ν +
(

1

ν
− 2 − 1

μ

)
Λν(t) � 0. (4.3)

Since λ(t) � 0 gives Λν(t) � 0 for t ∈ (0,1), condition (4.3) holds whenever 1/ν − 2 − 1/μ � 0, or ν � μ/(2μ + 1).
These observations will be used to prove the following theorem.

Theorem 4.2. Let λ be a non-negative real-valued integrable function on [0,1]. Assume that Λν and Πμ,ν given respectively by (3.2)
and (3.3) are both integrable on [0,1], and positive on (0,1). Under the assumptions stated in Theorem 3.1, if λ satisfies

tλ′(t)
λ(t)

�
{

1 + 1
μ, μ � 1 (γ > 0),

3 − 1
α , γ = 0, α ∈ (0,1/3] ∪ [1,∞),

(4.4)

then F (z) = Vλ( f )(z) ∈ S∗ . The conclusion does not hold for smaller values of β .

Proof. Suppose μ � 1. In view of (4.3) and Theorem 4.1, the integral transform Vλ( f )(z) ∈ S∗ for ν � μ/(2μ+1). It remains
to find conditions on μ and ν in the range 0 � ν < μ/(2μ + 1) such that for each choice of λ, condition (4.3) is satisfied.

Now �(t) at t = 1 in (4.3) reduces to

�(1) = −λ(1) +
(

1

ν
− 2 − 1

μ

)
Λν(1) = −λ(1) � 0.

Hence to prove condition (4.3), it is enough to show that � is an increasing function in (0,1). Now

�′(t) = −λ′(t)t1−1/ν −
(

1 − 1

ν

)
λ(t)t−1/ν −

(
1

ν
− 2 − 1

μ

)
λ(t)

t1/ν

= −λ(t)t−1/ν

[
tλ′(t)
λ(t)

−
(

1 + 1

μ

)]
,

and this is non-negative when tλ′(t)/λ(t) � 1 + 1/μ.
In the case γ = 0, then μ = 0, ν = α > 0. Let

k(t) := Λα(t)t1/α−1, where Λα(t) =
1∫

t

λ(x)

x1/α
dx.

To apply Theorem 1 in [6] along with Theorem 3.1, the function p(t) = k(t)/(1 − t2) must be shown to be decreasing on the
interval (0,1). This will hold provided

q(t) := k(t) + 1 − t2

2
t−1k′(t) � 0.

Since q(1) = 0, this will certainly hold if q is increasing on (0,1). Now

q′(t) = (1 − t2)

2
t−2[tk′′(t) − k′(t)

]
,

and

tk′′(t) − k′(t) = Λ′′
α(t)t1/α + 2

(
1

α
− 1

)
Λ′

α(t)t1/α−1 +
(

1

α
− 1

)(
1

α
− 2

)
Λα(t)t1/α−2

− Λ′
α(t)t1/α−1 −

(
1

α
− 1

)
Λα(t)t1/α−2

= t1/α−2
[
Λ′′

α(t)t2 + Λ′
α(t)t

(
2

α
− 3

)
+

(
1

α
− 1

)(
1

α
− 3

)
Λα(t)

]
.

Thus tk′′(t) − k′(t) is non-negative if

Λ′′
α(t)t2 + Λ′

α(t)t

(
2

α
− 3

)
+

(
1

α
− 1

)(
1

α
− 3

)
Λα(t) � 0.

The latter condition is equivalent to

−λ′(t)t2−1/α + λ(t)t1−1/α

(
3 − 1

α

)
+

(
1

α
− 1

)(
1

α
− 3

)
Λα(t) � 0. (4.5)
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Since Λα(t) � 0 and (1/α − 1)(1/α − 3) � 0 for α ∈ (0,1/3] ∪ [1,∞), then q′(t) � 0 is equivalent to

−λ′(t)t2−1/α + λ(t)t1−1/α

(
3 − 1

α

)
� 0 ⇐⇒ tλ′(t)

λ(t)
� 3 − 1

α
.

Thus (4.3) is satisfied and the proof is complete. �
Remark 4.1.

(1) For μ < 1, the conditions obtained will generally be complicated, and for μ � 1, the conditions coincide with those
given in [12].

(2) Taking α = 1 + 2γ , γ > 0 and μ = 1 in Theorem 4.2 yields Corollary 3.1 in [4] and Theorem 3.1 in [12].
(3) The condition μ � 1 is equivalent to 0 < γ � α � 2γ + 1.

5. Applications to certain integral transforms

In this section, various well-known integral operators are considered, and conditions for starlikeness for f ∈ Wβ(α,γ )

under these integral operators are obtained. First let λ be defined by

λ(t) = (1 + c)tc, c > −1.

Then the integral transform

Fc(z) = Vλ( f )(z) = (1 + c)

1∫
0

tc−1 f (tz)dt, c > −1, (5.1)

is the Bernardi integral operator. The classical Alexander and Libera transforms are special cases of (5.1) with c = 0 and
c = 1 respectively. For this special case of λ, the following result holds.

Theorem 5.1. Let c > −1, and β < 1 satisfy

β

1 − β
= −(c + 1)

1∫
0

tc g(t)dt,

where g is given by (2.6). If f ∈ Wβ(α,γ ), then the function

Vλ( f )(z) = (1 + c)

1∫
0

tc−1 f (tz)dt

belongs to S∗ if

c �
{

1 + 1
μ, μ � 1 (γ > 0),

3 − 1
α , γ = 0, α ∈ (0,1/3] ∪ [1,∞).

The value of β is sharp.

Proof. With λ(t) = (1 + c)tc , then

tλ′(t)
λ(t)

= t
c(1 + c)tc−1

(1 + c)tc
= c,

and the result now follows from Theorem 4.2. �
Taking γ = 0, α > 0 in Theorem 5.1 leads to the following corollary:

Corollary 5.1. Let −1 < c � 3 − 1/α, α ∈ (0,1/3] ∪ [1,∞), and β < 1 satisfy

β

1 − β
= −(c + 1)

1∫
0

tc gα(t)dt,
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where gα is given by (2.7). If f ∈ Wβ(α,0) = Pα(β), then the function

Vλ( f )(z) = (1 + c)

1∫
0

tc−1 f (tz)dt

belongs to S∗ . The value of β is sharp.

Remark 5.1. When α = 1+2γ , γ > 0, and μ = 1, Theorem 5.1 yields Corollary 3.2 obtained by Ponnusamy and Rønning [12],
while in the case α = 1 and γ = 0, Theorem 5.1 yields Corollary 1 in Fournier and Ruscheweyh [6].

The case c = 0 in Theorem 5.1 yields the following interesting result, which we state as a theorem.

Theorem 5.2. Let α � γ > 0, or γ = 0, α � 1/3. If F ∈ A satisfies

Re
(

F ′(z) + αzF ′′(z) + γ z2 F ′′′(z)
)
> β

in D, and β < 1 satisfies

β

1 − β
= −

1∫
0

g(t)dt,

where g is given by (2.6), then F is starlike. The value of β is sharp.

Proof. It is evident that the function f = zF ′ belongs to the class

Wβ,0(α,γ ) =
{

f ∈ A: Re

(
(1 − α + 2γ )

f (z)

z
+ (α − 2γ ) f ′(z) + γ zf ′′(z)

)
> β, z ∈ D

}
.

Thus

F (z) =
1∫

0

f (tz)

t
dt,

and the result follows from Theorem 5.1 with c = 0 for the ranges α � γ > 0, or γ = 0, α � 1. Simple computations show
that in fact (4.5) is satisfied in the larger range γ = 0, α � 1/3. It is also evident from the proof of sharpness in Theorem 3.1
that indeed the extremal function in Wβ(α,γ ) also belongs to the class Wβ,0(α,γ ). �
Remark 5.2. We list two interesting special cases.

(1) If γ = 0, α � 1/3, and β = κ/(1 + κ), where (2.6) yields

κ = −
1∫

0

g(t)dt = −1 − 2
∞∑

n=1

(−1)n 1

1 + nα
= − 1

α

1∫
0

t1/α−1 1 − t

1 + t
dt,

then

Re
(

f ′(z) + αzf ′′(z)
)
> β ⇒ f ∈ S∗.

This reduces to a result of Fournier and Ruscheweyh [6]. In particular, if β = (1−2 ln 2)/(2(1− ln 2)) = −0.629445, then

Re
(

f ′(z) + zf ′′(z)
)
> β ⇒ f ∈ S∗.

(2) If γ = 1, α = 3, then μ = 1 = ν . In this case, (2.6) yields β = (6 − π2)/(12 − π2) = −1.816378. Thus

Re
(

f ′(z) + 3zf ′′(z) + z2 f ′′′(z)
)
> β ⇒ f ∈ S∗.

This sharp estimate of β improves a result of Ali et al. [1].

Theorem 5.3. Let b > −1, a > −1, and α > 0. Let β < 1 satisfy

β

1 − β
= −

1∫
0

λ(t)g(t)dt,
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where g is given by (2.6) and

λ(t) =
{

(a + 1)(b + 1)
ta(1−tb−a)

b−a , b 	= a,

(a + 1)2ta log(1/t), b = a.

If f ∈ Wβ(α,γ ), then

G f (a,b; z) =
{

(a+1)(b+1)
b−a

∫ 1
0 ta−1(1 − tb−a) f (tz)dt, b 	= a,

(a + 1)2
∫ 1

0 ta−1 log(1/t) f (tz)dt, b = a,

belongs to S∗ if

a �
{

1 + 1
μ, γ > 0 (μ � 1),

3 − 1
α , γ = 0, α ∈ (0,1/3] ∪ [1,∞).

(5.2)

The value of β is sharp.

Proof. It is easily seen that
∫ 1

0 λ(t)dt = 1. There are two cases to consider. When b 	= a, then

tλ′(t)
λ(t)

= a − (b − a)tb−a

1 − tb−a
.

The function λ satisfies (4.4) if

a − (b − a)tb−a

1 − tb−a
�

{
1 + 1

μ, γ > 0,

3 − 1
α , γ = 0, α ∈ (0,1/3] ∪ [1,∞).

(5.3)

Since t ∈ (0,1), the condition b > a implies (b − a)tb−a/(1 − tb−a) > 0, and so inequality (5.3) holds true whenever a satis-
fies (5.2). When b < a, then (a −b)/(ta−b − 1) < b −a, and hence a − (b −a)tb−a/(1 − tb−a) < b < a, and thus inequality (5.3)
holds true whenever a satisfies (5.2).

For the case b = a, it is seen that

tλ′(t)
λ(t)

= a − 1

log(1/t)
.

Since t < 1 implies 1/ log(1/t) � 0, condition (4.4) is satisfied whenever a satisfies (5.2). This completes the proof. �
Remark 5.3. The conditions b > −1 and a > −1 in Theorem 5.3 yield several improvements of known results.

(1) Taking γ = 0 and α > 0 in Theorem 5.3 leads to a result similar to Theorem 2.4(i) and (ii) obtained in [3] for the case
α ∈ [1/2,1]. The condition b > a there resulted in a ∈ (−1,1/α − 1]. When α = 1, the range of a obtained in [3] lies in
the interval (−1,0], whereas the range of a obtained in Theorem 5.3 for this particular case lies in (−1,2], and with
the condition b > a removed.

(2) Choosing α = 1 in the case above leads to improvements of Corollary 3.13(i) obtained in [2] and Corollary 3.1 in [11].
Indeed, there the conditions on a and b were b > a > −1, whereas in the present situation, it is only required that
b > −1, a > −1.

(3) Applying Theorem 5.3 to the particular case α = 1 + 2γ , γ > 0, and μ = 1 improves Theorem 4.1 in [4] in the sense
that the condition b > a > −1 is now replaced by b > −1, a > −1.

For another choice of λ, let it now be given by

λ(t) = (1 + a)p

Γ (p)
ta(log(1/t)

)p−1
, a > −1, p � 0.

The integral transform Vλ in this case takes the form

Vλ( f )(z) = (1 + a)p

Γ (p)

1∫
0

(
log

(
1

t

))p−1

ta−1 f (tz)dt, a > −1, p � 0.

This is the Komatu operator, which reduces to the Bernardi integral operator if p = 1. For this λ, the following result holds.
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Theorem 5.4. Let −1 < a, α > 0, p � 1, and β < 1 satisfy

β

1 − β
= − (1 + a)p

Γ (p)

1∫
0

ta(log(1/t)
)p−1

g(t)dt,

where g is given by (2.6). If f ∈ Wβ(α,γ ), then the function

Φp(a; z) ∗ f (z) = (1 + a)p

Γ (p)

1∫
0

(
log(1/t)

)p−1
ta−1 f (tz)dt

belongs to S∗ if

a �
{

1 + 1
μ, γ > 0 (μ � 1),

3 − 1
α , γ = 0, α ∈ (0,1/3] ∪ [1,∞).

(5.4)

The value of β is sharp.

Proof. It is evident that

tλ′(t)
λ(t)

= a − (p − 1)

log(1/t)
.

Since log(1/t) > 0 for t ∈ (0,1), and p � 1, condition (4.4) is satisfied whenever a satisfies (5.4). �
Remark 5.4.

(1) Taking γ = 0 and α > 0 in Theorem 5.4 gives a result similar to Theorem 2.1 in [3] and Theorem 2.3 in [8].
(2) When α = 1 + 2γ , γ > 0, and μ = 1, Theorem 5.4 yields Theorem 4.2 obtained by Balasubramanian et al. [4], while

when α = 1 and γ = 0, Theorem 5.4 yields Corollary 3.12(i) obtained by Balasubramanian et al. [2].

Let Φ be defined by Φ(1 − t) = 1 + ∑∞
n=1 bn(1 − t)n , bn � 0 for n � 1, and

λ(t) = Ktb−1(1 − t)c−a−bΦ(1 − t), (5.5)

where K is a constant chosen such that
∫ 1

0 λ(t)dt = 1. The following result holds in this instance.

Theorem 5.5. Let a,b, c,α > 0, and β < 1 satisfy

β

1 − β
= −K

1∫
0

tb−1(1 − t)c−a−bΦ(1 − t)g(t)dt,

where g is given by (2.6) and K is a constant such that K
∫ 1

0 tb−1(1 − t)c−a−bΦ(1 − t) = 1. If f ∈ Wβ(α,γ ), then the function

Vλ( f )(z) = K

1∫
0

tb−1(1 − t)c−a−bΦ(1 − t)
f (tz)

t
dt

belongs to S∗ provided one of the following conditions holds:

(i) c < a + b and 0 < b � 1,

(ii) c � a + b and b �
{

2 + 1
μ, γ > 0 (μ � 1),

4 − 1
α , γ = 0, α ∈ (1/4,1/3] ∪ [1,∞).

(5.6)

The value of β is sharp.

Proof. For λ given by (5.5),

tλ′(t)
λ(t)

= (b − 1) − (c − a − b)t

1 − t
− tΦ ′(1 − t)

Φ(1 − t)
.
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For the case c < a + b, computing (b − 1) − ((c − a − b)t)/(1 − t) and using the fact that tΦ ′(1 − t)/Φ(1 − t) > 0 implies
condition (4.4) is satisfied whenever 0 < b � 1. For c � a+b, a similar computation shows that the condition (4.4) is satisfied
whenever b satisfies (5.6). Now the result follows by applying Theorem 4.2 for this special λ. �

Taking γ = 0, α > 0 in Theorem 5.5 leads to the following corollary:

Corollary 5.2. Let a,b, c,α > 0, and β < 1 satisfy

β

1 − β
= −K

1∫
0

tb−1(1 − t)c−a−bΦ(1 − t)gα(t)dt,

where gα is given by (2.7), and K is a constant such that K
∫ 1

0 tb−1(1 − t)c−a−bΦ(1 − t) = 1. If f ∈ Wβ(α,0) = Pα(β), then the
function

Vλ( f )(z) = K

1∫
0

tb−1(1 − t)c−a−bΦ(1 − t)
f (tz)

t
dt

belongs to S∗ whenever a,b, c are related by either (i) c � a + b and 0 < b � 1, or (ii) c � a + b and b � 4 − 1/α, α ∈ (1/4,1/3] ∪
[1,∞), for all t ∈ (0,1). The value of β is sharp.

Remark 5.5. For α = 1, Corollary 5.2 improves Theorem 3.8(i) in [2] in the sense that the result now holds not only for
c � a + b and 0 < b � 3, but also to the range c � a + b, 0 < b � 1.

Taking α = 1 + 2γ , γ > 0 and μ = 1 in Theorem 5.5 reduces to the following corollary:

Corollary 5.3. Let a,b, c > 0, and let β < 1 satisfy

β

1 − β
= −K

1∫
0

tb−1(1 − t)c−a−bΦ(1 − t)gγ (t)dt,

where gγ is given by (2.7), and K is a constant such that K
∫ 1

0 tb−1(1− t)c−a−bΦ(1− t) = 1. If f ∈ Wβ(1+2γ ,γ ), then the function

Vλ( f )(z) = K

1∫
0

tb−1(1 − t)c−a−bΦ(1 − t)
f (tz)

t
dt

belongs to S∗ whenever a,b, c are related by either (i) c � a + b and 0 < b � 1, or (ii) c � a + b and 0 < b � 3, for all t ∈ (0,1) and
γ > 0. The value of β is sharp.

Remark 5.6. Choosing Φ(1 − t) = F (c − a,1 − a, c − a − b + 1;1 − t) in Theorem 5.5(ii) gives

K = Γ (c)

Γ (a)Γ (b)Γ (c − a − b + 1)

whenever c − a − b + 1 > 0. In this case, the function Vλ( f )(z) reduces to the Hohlov operator given by

Vλ( f )(z) = Ha,b,c( f )(z) = zF (a,b; c; z) ∗ f (z)

= K

1∫
0

tb−1(1 − t)c−a−b F (c − a,1 − a, c − a − b + 1;1 − t)
f (tz)

t
dt,

where a > 0, b > 0, c − a − b + 1 > 0. This case of Corollary 5.2 was treated in [3, Theorem 2.2(i), (μ = 0)] and [8, Theo-
rem 2.4], but the range of b provided by Corollary 5.2(ii) yields 0 < b � 3, which is larger than the range given in [3] and [8]
of 0 < b � 1.
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